Improving the heavy rainfall forecasting using a weighted deep learning model
نویسندگان
چکیده
Weather forecasting has been playing an important role in socio-economics. However, operational numerical weather prediction (NWP) is insufficiently accurate terms of precipitation forecasting, especially for heavy rainfalls. Previous works on NWP bias correction utilizing deep learning (DL) methods mostly focused a local region, and the China-wide forecast had not attempted. Meanwhile, earlier studies imposed no particular focus strong rainfalls despite their severe catastrophic impacts. In this study, we propose DL model called weighted U-Net (WU-Net) that incorporates sample weights various events to improve forecasts intensive China. It found WU-Net can further skill heaviest rainfall comparing with ordinary ECMWF-IFS. Further analysis shows improvement increases growing lead time, distributes mainly eastern parts This study suggests considering imbalance meteorological data could generated by prediction.
منابع مشابه
Improving Stock Return Forecasting by Deep Learning Algorithm
Improving return forecasting is very important for both investors and researchers in financial markets. In this study we try to aim this object by two new methods. First, instead of using traditional variable, gold prices have been used as predictor and compare the results with Goyal's variables. Second, unlike previous researches new machine learning algorithm called Deep learning (DP) has bee...
متن کاملProvide a stock price forecasting model using deep learning algorithms and its use in the pricing of Islamic bank stocks
Predicting stock prices is complicated; various components, such as the general state of the economy, political events, and investor expectations, affect the stock market. The stock market is in fact a chaotic nonlinear system that depends on various political, economic and psychological factors. To overcome the limitations of traditional analysis techniques in predicting nonlinear patterns, ex...
متن کاملMelanoma detection with a deep learning model
Background: Skin cancer is one of the most common forms of cancer in the world and melanoma is the deadliest type of skin cancer. Both melanoma and melanocytic nevi begin in melanocytes (cells that produce melanin). However, melanocytic nevi are benign whereas melanoma is malignant. This work proposes a deep learning model for classification of these two lesions. Methods: In this analytic s...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملImproving Deep Learning using Generic Data Augmentation
Deep artificial neural networks require a large corpus of training data in order to effectively learn, where collection of such training data is often expensive and laborious. Data augmentation overcomes this issue by artificially inflating the training set with label preserving transformations. Recently there has been extensive use of generic data augmentation to improve Convolutional Neural N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Environmental Science
سال: 2023
ISSN: ['2296-665X']
DOI: https://doi.org/10.3389/fenvs.2023.1116672